Changes to jupyter notebook for lightning talks

This commit is contained in:
Tyler Hallada 2017-08-11 11:03:57 -04:00
parent ddee5e4a3b
commit d922297f99
3 changed files with 57 additions and 44 deletions

View File

@ -212,42 +212,14 @@
"\n", "\n",
"We can partition by threes too:\n", "We can partition by threes too:\n",
"\n", "\n",
"(<span style=\"color:blue\">The</span> <span style=\"color:red\">quick brown</span>) (quick brown fox) ... (<span style=\"color:blue\">the</span> <span style=\"color:red\">lazy dog</span>)\n" "(<span style=\"color:blue\">The</span> <span style=\"color:red\">quick brown</span>) (quick brown fox) ... (<span style=\"color:blue\">the</span> <span style=\"color:red\">lazy dog</span>)\n",
] "\n",
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Or, the condition can be two words (`condition = 'the lazy'`):\n", "Or, the condition can be two words (`condition = 'the lazy'`):\n",
"\n", "\n",
"(The quick brown) (quick brown fox) ... (<span style=\"color:blue\">the lazy</span> <span span=\"color:red\">dog</span>)" "(The quick brown) (quick brown fox) ... (<span style=\"color:blue\">the lazy</span> <span style=\"color:red\">dog</span>)\n",
] "\n",
}, "These are **trigrams**.\n",
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"\n", "\n",
"These are **trigrams**."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"We can partition any **N** number of words together as **ngrams**." "We can partition any **N** number of words together as **ngrams**."
] ]
}, },
@ -343,7 +315,7 @@
"source": [ "source": [
"words = ('The quick brown fox jumped over the '\n", "words = ('The quick brown fox jumped over the '\n",
" 'lazy dog and the quick cat').split(' ')\n", " 'lazy dog and the quick cat').split(' ')\n",
"print words" "print(words)"
] ]
}, },
{ {
@ -409,6 +381,17 @@
"{k: dict(v) for k, v in dict(cfd).items()}" "{k: dict(v) for k, v in dict(cfd).items()}"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Conditional Frequency Distributions (CFDs) ##"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
@ -501,9 +484,9 @@
"word = random.choice(TEXT)\n", "word = random.choice(TEXT)\n",
"# generate 15 more words\n", "# generate 15 more words\n",
"for i in range(15):\n", "for i in range(15):\n",
" print word,\n", " print(word + ' ', end='')\n",
" if word in cfd:\n", " if word in cfd:\n",
" word = random.choice(cfd[word].keys())\n", " word = random.choice(list(cfd[word].keys()))\n",
" else:\n", " else:\n",
" break" " break"
] ]
@ -604,10 +587,12 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"slideshow": { "slideshow": {
"slide_type": "fragment" "slide_type": "slide"
} }
}, },
"source": [ "source": [
"# Syllables\n",
"\n",
"* poet: /ˈpoʊət/\n", "* poet: /ˈpoʊət/\n",
"* does: /ˈdʌz/\n", "* does: /ˈdʌz/\n",
"\n", "\n",
@ -806,7 +791,7 @@
"source": [ "source": [
"from stat_parser import Parser\n", "from stat_parser import Parser\n",
"parsed = Parser().parse('The quick brown fox jumps over the lazy dog.')\n", "parsed = Parser().parse('The quick brown fox jumps over the lazy dog.')\n",
"print parsed" "print(parsed)"
] ]
}, },
{ {
@ -917,6 +902,18 @@
"[https://spacy.io/docs/api/#speed-comparison](https://spacy.io/docs/api/#speed-comparison)" "[https://spacy.io/docs/api/#speed-comparison](https://spacy.io/docs/api/#speed-comparison)"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"![Screenshot of displaCy, a dependency visualizer for spaCy](images/displacy.png)\n",
"[https://demos.explosion.ai/displacy/](https://demos.explosion.ai/displacy/)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
@ -962,6 +959,20 @@
"[http://karpathy.github.io/2015/05/21/rnn-effectiveness/](http://karpathy.github.io/2015/05/21/rnn-effectiveness/)" "[http://karpathy.github.io/2015/05/21/rnn-effectiveness/](http://karpathy.github.io/2015/05/21/rnn-effectiveness/)"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"![Screenshot of word-rnn readme on Github](images/word-rnn.png)\n",
"[word-rnn](https://github.com/larspars/word-rnn)\n",
"\n",
"[word-rnn-tensorflow](https://github.com/hunkim/word-rnn-tensorflow)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
@ -973,28 +984,30 @@
"source": [ "source": [
"# The end #\n", "# The end #\n",
"\n", "\n",
"Questions?" "Questions?\n",
"\n",
"Full write up at: [hallada.net/blog](http://www.hallada.net/2017/07/11/generating-random-poems-with-python.html)"
] ]
} }
], ],
"metadata": { "metadata": {
"celltoolbar": "Slideshow", "celltoolbar": "Slideshow",
"kernelspec": { "kernelspec": {
"display_name": "Python 2", "display_name": "Python 3",
"language": "python", "language": "python",
"name": "python2" "name": "python3"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
"version": 2 "version": 3
}, },
"file_extension": ".py", "file_extension": ".py",
"mimetype": "text/x-python", "mimetype": "text/x-python",
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython2", "pygments_lexer": "ipython3",
"version": "2.7.12" "version": "3.5.2"
}, },
"livereveal": { "livereveal": {
"scroll": true, "scroll": true,

BIN
images/displacy.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

BIN
images/word-rnn.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB