import nltk import operator import os import pickle import random import re import codecs from nltk.tree import Tree from collections import defaultdict from tqdm import tqdm from stat_parser import Parser syntaxes = defaultdict(set) SYNTAXES_FILE = 'syntaxes.p' CFDS_FILE = 'cfds.p' def tree_hash(self): return hash(tuple(self.leaves())) Tree.__hash__ = tree_hash # NOTE: to me: I need to replace nltk parse and tokenization with spacy because it is much faster and less detailed # which is actually a plus. The problem is that spacy does not create a syntax tree like nltk does. However, it does # create a dependency tree, which might be good enough for splitting into chunks that can be swapped out between # corpora. Shitty bus wifi makes it hard to download spacy data and look up the docs. def generate(): global syntaxes parser = Parser() if not os.path.exists(SYNTAXES_FILE): # sents = nltk.corpus.gutenberg.sents('results.txt') # NOTE: results.txt is a big file of raw text not included in source control, provide your own corpus. with codecs.open('results.txt', encoding='utf-8') as corpus: sents = nltk.sent_tokenize(corpus.read()) sents = [sent for sent in sents if len(sent) < 150][0:1500] for sent in tqdm(sents): try: parsed = parser.parse(sent) except TypeError: pass syntax_signature(parsed, save=True) with open(SYNTAXES_FILE, 'wb+') as pickle_file: pickle.dump(syntaxes, pickle_file) else: with open(SYNTAXES_FILE, 'rb+') as pickle_file: syntaxes = pickle.load(pickle_file) if not os.path.exists(CFDS_FILE): # corpus = nltk.corpus.gutenberg.raw('results.txt') with codecs.open('results.txt', encoding='utf-8') as corpus: cfds = [make_cfd(corpus.read(), i, exclude_punctuation=False, case_insensitive=True) for i in range(2, 5)] with open(CFDS_FILE, 'wb+') as pickle_file: pickle.dump(cfds, pickle_file) else: with open(CFDS_FILE, 'rb+') as pickle_file: cfds = pickle.load(pickle_file) sents = nltk.corpus.gutenberg.sents('austen-emma.txt') sents = [sent for sent in sents if len(sent) < 50] sent = random.choice(sents) parsed = parser.parse(' '.join(sent)) print(parsed) print(' '.join(parsed.leaves())) replaced_tree = tree_replace(parsed, cfds, []) print('=' * 30) print(' '.join(replaced_tree.leaves())) print(replaced_tree) def list_to_string(l): return str(l).replace(" ", "").replace("'", "") def syntax_signature(tree, save=False): return list_to_string(syntax_signature_recurse(tree, save=save)) def syntax_signature_recurse(tree, save=False): global syntaxes if type(tree) is Tree: label = tree.label() if label == ',': label = 'COMMA' children = [syntax_signature_recurse(child, save=save) for child in tree if type(child) is Tree] if not children: if save: syntaxes[label].add(tree) return label else: if save: syntaxes[list_to_string([label, children])].add(tree) return [label, children] else: raise ValueError('Not a nltk.tree.Tree: {}'.format(tree)) def tree_replace(tree, cfds, preceding_children=[]): condition_search = ' '.join([' '.join(child.leaves()) for child in preceding_children]).lower() sig = syntax_signature(tree) if sig in syntaxes: matching_fragments = tuple(syntaxes[sig]) if len(matching_fragments) > 1 and condition_search: matching_leaves = [' '.join(frag.leaves()) for frag in matching_fragments] most_common = get_most_common(condition_search, cfds) candidates = list(set(matching_leaves).intersection(set(most_common))) if candidates: return Tree(tree.label(), [random.choice(candidates)]) # find the first element of get_most_common that is also in this list of matching_leaves return random.choice(matching_fragments) else: children = [tree_replace(child, cfds, preceding_children + tree[0:i]) for i, child in enumerate(tree) if type(child) is Tree] if not children: # unable to replace this leaf return tree else: return Tree(tree.label(), children) # TODO: this part should definitely be in a different class or module. I need to be able to resuse this method # among all of my nlp expirements. See notes in this repo for more detail. def make_cfd(text, n, cfd=None, exclude_punctuation=True, case_insensitive=True): if not cfd: cfd = {} if exclude_punctuation: nopunct = re.compile('^\w+$') sentences = nltk.sent_tokenize(text) for sent in sentences: sent = nltk.word_tokenize(sent) if case_insensitive: sent = [word.lower() for word in sent] if exclude_punctuation: sent = [word for word in sent if nopunct.match(word)] for i in range(len(sent) - (n - 1)): condition = ' '.join(sent[i:(i + n) - 1]) sample = sent[(i + n) - 1] if condition in cfd: if sample in cfd[condition]: cfd[condition][sample] += 1 else: cfd[condition].update({sample: 1}) else: cfd[condition] = {sample: 1} return cfd def get_most_common(search, cfds, most_common=None): if not most_common: most_common = list() words = search.split(' ') for i in reversed(range(len(cfds))): n = i + 2 if len(words) >= (n - 1): query = ' '.join(words[len(words) - (n - 1):]) if query in cfds[i]: most_common.extend([entry[0] for entry in sorted(cfds[i][query].items(), key=operator.itemgetter(1), reverse=True) if entry[0] not in most_common]) return most_common if __name__ == '__main__': generate()