nlp/syntax_gen.py

108 lines
3.3 KiB
Python

import codecs
import os
import pickle
import random
import spacy
TEMPLATE_CORPUS = 'austencorpus'
CONTENT_CORPUS = 'lovecraftcorpus'
print('Loading spaCy model... ', end='')
nlp = spacy.load('en_core_web_lg')
print('Done')
def load_text_files(dirname):
for (dirpath, dirnames, filenames) in os.walk(dirname):
for filename in filenames:
with codecs.open(os.path.join(dirpath, filename),
encoding='utf-8') as f:
yield f.read()
def load_syntax(dirname):
full_text = ''
for text in load_text_files(dirname):
full_text += text
return nlp(full_text)
def load_object_to_file(filename):
with open(filename, 'rb') as f:
return pickle.load(f)
def save_object_to_file(filename, object):
with open(filename, 'wb') as f:
pickle.dump(object, f)
def build_content_dict(content_syntax):
content_dict = {}
for word in content_syntax:
if word.tag not in content_dict:
content_dict[word.tag] = {}
if word.dep not in content_dict[word.tag]:
content_dict[word.tag][word.dep] = set()
content_dict[word.tag][word.dep].add(word)
return content_dict
def find_closest_content_word(template_word, content_dict):
closest = None
closest_score = 0.0
if template_word.tag in content_dict:
if template_word.dep in content_dict[template_word.tag]:
content_word_set = content_dict[template_word.tag][template_word.dep]
else:
random_dep = random.choice(list(content_dict[template_word.tag].keys()))
content_word_set = content_dict[template_word.tag][random_dep]
else:
return None
for content_word in content_word_set:
if closest is None or template_word.similarity(content_word) > closest_score:
closest = content_word
closest_score = template_word.similarity(content_word)
return closest
if __name__ == '__main__':
if os.path.exists('template_syntax.bin'):
print('Loading parsed template corpus... ', end='')
template_syntax = spacy.tokens.Doc(spacy.vocab.Vocab())
template_syntax.from_disk('template_syntax.bin')
print('Done')
else:
print('Parsing template corpus... ', end='')
template_syntax = load_syntax(TEMPLATE_CORPUS)
template_syntax.to_disk('template_syntax.bin')
print('Done')
if os.path.exists('content_syntax.bin'):
print('Loading parsed content corpus... ', end='')
content_syntax = spacy.tokens.Doc(spacy.vocab.Vocab())
content_syntax.from_disk('content_syntax.bin')
print('Done')
else:
print('Parsing content corpus... ', end='')
content_syntax = load_syntax(CONTENT_CORPUS)
content_syntax.to_disk('content_syntax.bin')
print('Done')
print('Building content_dict... ', end='')
content_dict = build_content_dict(content_syntax)
save_object_to_file('content_dict.bin', content_dict)
print('Done')
for template_word in template_syntax[0:100]:
closest_word = find_closest_content_word(template_word, content_dict)
if closest_word:
print(closest_word.text_with_ws, end='')
else:
print('<NOMATCH> ', end='')
import ipdb; ipdb.set_trace()